Decomposing Euler–Poincaré Flow on the Space of Hamiltonian Vector Fields
نویسندگان
چکیده
The main result of this paper is a matched-pair decomposition the space symmetric contravariant tensors TQ. From procedure two complementary Lie subalgebras TQ under mutual interaction arise. Introducing lift operator, matched pair Hamiltonian vector fields determined. According to realization, Euler–Poincaré flows on such spaces are decomposed into subdynamics: one formulation isentropic fluid flows, and other corresponds with equations order n⩾2.
منابع مشابه
the effects of changing roughness on the flow structure in the bends
flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...
Deformed Hamiltonian vector fields on Lagrangian fibrations
Networks of planar Hamiltonian systems closely resemble Hamiltonian system in R, but with the canonical equation for one of the variables in each conjugate pair rescaled by a number called the Turing instability parameter. To generalise these dynamical systems to symplectic manifolds in this paper we introduce and study the properties of deformed Hamiltonian vector fields on Lagrangian fibratio...
متن کاملWhen are Vector Fields Hamiltonian?
There is reason to believe that at small scales and low temperatures, quantum mechanical effects will play a role in dissipative systems which arise in solid state physics. References to and a brief discussion of various approaches to the quantisation of the damped harmonic oscillator, can be found in [1]. Although there exist successful and physically intuitive ways to deal with the quantisati...
متن کاملDeformations of Vector Fields and Hamiltonian Vector Fields on the Plane
For the Lie algebras L\(H(2)) and L\(W(2)), we study their infinitesimal deformations and the corresponding global ones. We show that, as in the case of L\{W(\)), each integrable infinitesimal deformation of L\(H(2)) and L1(W/(2)) can be represented by a 2-cocycle that defines a global deformation by means of a trivial extension. We also illustrate that all deformations of L\{H{2)) arise as res...
متن کاملconstruction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2022
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym15010023